文章编号:0258-7025(2001)12-1085-04

腔内 CdTe 电光调 Q CO₂ 窄脉冲激光外差 信号特性分析

王春晖王骐李琦陆威

(哈尔滨工业大学光电子技术研究所 哈尔滨 150001)

提要 较详细地研究了腔内 CdTe 电光调 Q CO₂ 容脉冲激光及其外差信号的时域频域特性,发现它的激光脉冲时 域波形有很长的拖尾,拖尾持续时间与 CdTe 晶体外触发电压开关宽度有关,触发宽度越宽拖尾越长,反之则短。 进行了调 Q CO₂ 脉冲激光微弱信号检测实验,即将脉冲激光衰减到用直接探测方法无法检测的程度,此时再用外 差检测方法,在脉冲包络之内及其拖尾部分观察到了较强的外差中频信号,从实验上验证了外差探测灵敏度远远 高于直接探测。根据该激光脉冲拖尾持续时间部分可控的特性,从理论上讨论了 CO₂ 连续激光本振和窄脉冲主振 激光外差中频信号频率跟踪和偏频锁定的可行性。

关键词 外差探测 ,调 Q 脉冲 激光雷达 中图分类号 TN 258.98 文献标识码 A

Characteristics of *Q*-switched CO₂ Short-pulse Heterodyne Signal with CdTe Electrooptic Modulator

WANG Chun-hui WANG Qi LI Qi LU Wei

(Institute of Optoelectronics, Harbin Institute of Technology, Harbin 150006)

Abstract In this paper, the properties of time and frequency domain of pulsed CO_2 laser difference frequency signals with CdTe electrooptic modulator are studied in detail. The long pulse trailing is found in time domain, and the trailing time bear a relation to outer trigger voltage of CdTe crystal. If it is very weak, the pulse signals can hardly be received through direct detection. In this case, the strong difference frequency signals from pulse trailing will be received if heterodyne detection is used. According to the controllability to trailing time, the possibility of intermediate frequency signals trace and frequency-offset lock between short-pulse transmitter and CW local oscillator light in pulse laser heterodyne is discussed. Key words heterodyne detection, Q-switched pulse, laser radar

1 引 言

自从 MIT 林肯实验室 1978 年研制出第一台外 差式 CO₂ 激光成像雷达以来,突破了传统激光成像 雷达观念,引起了广泛的兴趣和重视。随着小型化、 高性能波导 CO₂ 激光器和图像处理技术的发展及 军事上的需求牵引,使 CO₂ 相干激光成像雷达技术 日趋成熟。目前 CO₂ 激光外差成像雷达体制主要 有 ;声光(A-O)调制连续波外差体制¹¹,线性调频脉 冲压缩体制²¹和窄脉冲外差体制(电光调 Q)³¹。 由于受国内高重复频率、稳频、波导 CO₂ 激光器等 关键器件制造技术的限制,我国才刚刚开展脉冲 CO₂ 激光外差探测技术的研究⁴¹。本文利用 CdTe 电光调 Q 波导 CO₂ 激光器,研究分析 CO₂ 窄脉冲 激光及其外差信号的特性,讨论 CO₂ 电光调 Q 脉冲 激光外差中频信号频率和偏频锁定的可行性。

2 腔内 CdTe 电光调 Q CO₂ 激光器和 窄脉冲激光外差

2.1 腔内 CdTe 电光调 Q CO₂ 激光器 我们研制了一台光栅选支(P20)的腔内 CdTe

电光调 Q 射频激励双通道共电极波导 CO₂ 激光

收稿日期 2000-10-08; 收到修改稿日期 2000-12-25

器⁴]。它的结构为:上、下铝电极与两片 Al₂O₃ 陶瓷 波导通道的截面积为 2.25 mm×2.25 mm,波导长 为 400 mm,光栅(光栅常数为 150 lines/mm,一级反 射率为 95%)放置在距波导口 10 mm 处,一级输出。 采用第二类波导谐振腔,可选择焦距为 $f = \pi w_0^2 / \lambda$ = 185 mm 的 ZnSe 透镜,放在距波导口 f 处,其中 $w_0 = 0.7032a(a 为方波导半宽度)。$

电光调 Q 开关由 ZnSe 布儒斯特窗、一块 AM 切割 CdTe 晶体和 CdSλ/4 波片组成,电场沿[110] 方向,通光方向沿[110],利用 CdTe 晶体横向线性 普克耳斯电光效应,即输入的线偏振光的垂直分量 和水平分量之间的相位延迟与外加点矢量成正 比^[5]

$$\Delta \Phi = \frac{\sqrt{3}\pi n_0^3 \gamma_{41} lV}{d\lambda_0} \tag{1}$$

其中 n_0 为寻常折射率 , γ_{41} 为电光常数 ,V 为调制电 压 , λ_0 为光波波长。对于 CdTe : $n_0\gamma_{41}$ (相位电光特 性)= $10 \pm 1 \times 10^{-5}$ (m/V), $V_{\lambda/2} = 5.30$ kV , $V_{\lambda/4}$ = 2.65 kV。 当 Q 开关未加 $V_{\lambda/4}$ 电压时,由布氏窗输出的线 偏振光 $A_{\lambda}/4$ 波片后,变为圆偏振光,再经晶体和 发射镜发射后,回来的圆偏振光再次经过 $\lambda/4$ 波片 时,成为线偏振光。因为两次经过波片偏振方向旋转 90° 其部分被布氏窗反射到腔外,腔处于高损耗状 态,不能形成激光振荡。

当晶体加 V_{λ/4} 电压时,通过 λ/4 波片,CdTe 晶体和反射镜反射回来的线偏振光,偏振方向不变,能通过布氏窗而进入波导管内,此时腔处于低损耗状态,可获得窄脉冲输出。

2.2 CO₂ 窄脉冲激光外差

连续本振激光和窄脉冲主振激光的光波场可分 别表示为^[3]

$$e_{1}(\rho_{t}, t) = E_{lo}(\rho) \exp(j\omega_{l}t)$$

$$e_{r}(\rho_{t}, t) = E_{r}(\rho) S(t) \exp(j\omega_{r}t)$$

其中 $E_{r}(\rho)_{t}, E_{lo}(\rho)_{t}, \omega_{t}, \omega_{t}$, S(t)分别为主振及本 振光场振幅、角频率和脉冲波形时间函数。由于一 般红外探测器件大都是平方律检波器件,因此,它的 输出信号经推导可表示为^[3]

$$i_{p}(t) = \alpha \left[\frac{P_{l}}{2} + \frac{P_{r}}{2} S_{r}(t) + \sqrt{P_{l}P_{r}} S_{r}(t) \cos(\omega_{ij}t + \varphi) \right]$$

$$P_{l} = \int_{A} e_{L}^{2}(\rho_{r}, t) d\rho, P_{r} = \int_{A} e_{r}^{2}(\rho_{r}, t) d\rho, \omega_{ij} = (\omega_{l} - \omega_{r})$$

$$(2)$$

其中,

A_d 为探测器敏感面面积 ,α 为与探测器量子效率有 关的系数。本振光连续输出 ,主振光脉冲输出 ,根据 实验观测结果 ,调 Q CO₂ 激光脉冲波形时间函数可 以用以下归一化函数形式近似表示^[3]

$$S_r(t) = \frac{t}{\tau} e^{-\left(\frac{t}{\tau}\right)^2}$$

其中 τ 为脉冲的脉宽。从(2)式,在时域如果本振光

和主振光都是连续光,那么 $S_{i}(t) = 1$,即(2)式中 的第一项和第二项为直流分量,第三项为交流分量 (连续波外差典型公式)。如果本振是连续光而主振 为脉冲光即如(2)式所示,那么第二项和第三项都 是交流分量,差频信号应当是角频率为 ω_{if} 的周期 性载波与高斯或瑞利时间函数包络波的乘积。所 以(2)式的傅里叶变换可以写成

$$I_{p}(\omega) = \alpha \left[\frac{P_{l}}{2} \delta(\omega) + \frac{P_{r}}{2} S_{r}(\omega) + \sqrt{P_{l}P_{r}} S_{r}(\omega - \omega_{if}) + \sqrt{P_{1}P_{r}} S_{r}(\omega + \omega_{if}) \right]$$
(3)
$$S_{r}(\omega) = -j \sqrt{\pi} \tau \left(\frac{\omega \tau}{2} \right) e^{-\left(\frac{\omega \tau}{2}\right)^{2}} \qquad S_{r}(\omega \pm \omega_{f}) = -j \sqrt{\pi} \tau \left[\frac{(\omega \pm \omega_{f})}{2} \right] e^{-\left[\frac{(\omega \pm \omega_{f})}{2}\right]^{2}}$$

从(2)(3)式可见,角频率为 ω_{if} 载频外差信号将脉 冲波形的频谱 $S_r(\omega)$ 拉向 $\pm \omega_{if}$ 处,外差探测一般满 足 $P_l \gg P_r$ (3)式中第二项可以忽略不计,零频处 的毛穷大尖峰为连续本振光的频谱即基频, $\pm \omega_{if}$ 处 的峰值为外差信号的频谱,如图4,图7所示。对于脉 冲外差信号,脉冲包络相当于带通滤波器,它的频谱 形式是在差频 $\pm \omega_{if}$ 处的 sinc 函数,将比连续外差的 频谱有较大的展宽,因此,在不考虑多普勒效应的情 况下,脉冲外差信号接收机的接收带宽,应该选择脉 冲外差频谱(sinc 函数)第一个零点范围内的频谱宽 度^{6]}。

3 实验结果与分析

实验系统如图 1 所示, Q-switch CO₂ laser 为自 行研制的 CdTe 电光调 Q(晶体是美国 II - IV 公司) 光栅选支(P20)波导 CO₂ 激光器,平均功率 1.5 W 脉宽 200 ns,重复频率 10 kHz; LO-CO₂ laser 为 连续输出、光栅选支(P20),压电陶瓷(PZT)调谐 波导 CO₂ 激光器; Detector 为光伏 HgCdTe 探测器,

它的响应截止频率为 300 MHz ;示波器为美国泰克 公司的 TDS684A,可进行快速傅里叶变换(FFT)。 ZnSn 布儒斯特窗(B.S.), $\lambda/4$ 和 $\lambda/2$ 波片构成偏振 隔离匹配光学系统 使目标回波与发射光偏振隔离, 同时使线偏振的本振光与回波在探测器敏感面上保 持偏振匹配 卡塞格伦望远镜在光路中作为收发合 置光学天线 ,CaF2 衰减片组用来控制本振光光强。 TDS684A 记录的脉冲外差时域频域波形如图 2~7 所示。

Fig. 1 Experimental system for CO₂ pulsed laser heterodyne

图 2 脉冲及触发电压波形

Fig. 2 Pulse shape and trigger voltage

本实验中由于目标是静止的,没有多普勒频移, 采用 PZT 改变本振激光器的腔长来获得外差偏置, 它可实现 5~150 MHz 的外差偏置,本文仅给出了 60 MHz 脉冲激光外差信号的实验结果。

从实验结果发现电光调 Q CO2 脉冲的前沿比 较陡 ,它的后沿持续时间比较长 称之为脉冲激光波 形的拖尾,拖尾的长度与加在 CdTe 调 Q 晶体上触 发方波电压的宽度有关 整个调 Q 脉冲波形从时域 来看非常近似于瑞利统计函数形式。如图 5,图 6 所示 当挡住本振激光 将主振脉冲激光强度衰减到 探测器无法接收到的信号时 再打开本振激光 这时 在脉冲的拖尾部分仍然可以得到比较强的外差信

Fig. 3 60 MHz pulsed beam heterodyne signal shape

图 6 图 4 情况下的外差波形 Fig. 6 Heterodyne signal in Fig. 4

图 4 60 MHz 脉冲 FFT 波形

Fig. 4 60 MHz FFT pulsed signal shape

图 7 图 5 的 FFT 变换波形 Fig. 7 FFT signal in Fig. 5

号。由此通过实验验证了外差探测的灵敏度远远高 干直接探测。

我们知道,高速运动目标和外差接收系统之间 一般存在较大的多谱勒频移起伏,而外差接收系统 有一个接收带宽 B。如果多普勒起伏非常小 那么外 差信号就有可能飘出系统的接收带宽 B 而无法判 断系统是否接收外差信号。因此,为了保证系统接收 到外差信号 必须采取主振激光和本振连续激光之 间的偏频控制 使其频率漂移锁定在系统接收带宽 B 之内 或者更窄 以提高接收系统的信噪比 SNB。 但是,在CO2脉冲激光外差体制中,由于CO2调Q 脉冲激光的脉宽比较窄,一般在 $50 \sim 200$ ns 之间

(本实验用的脉宽为 180 ns) 如外差信号为 60 MHz (周期约为 17 ns)时,在 180 ns的脉宽之内约有 10 几个周期的外差信号(如图4所示),在偏频锁定之 前必须进行鉴频。而在这短短的 180 ns 时间内,一 般鉴频器几乎无法高精度地确定外差中频信号的频 率 偏频控制也就无从谈起 这正是目前脉冲激光外 差偏频锁定难以实现的原因。但通过脉冲激光外差 实验发现 除了在脉宽之内有比较强的外差信号外, 在脉冲拖尾部分也存在较强的外差信号,而调Q CO, 激光脉冲拖尾的长短可以由加在调 Q 晶体上 的高压触发脉冲电压脉宽控制。实验发现,把它控 制在 1~3 µs 之内,对激光脉冲的峰值功率几乎没 有任何影响。例如,如果脉冲重复频率为 10 kHz 即 脉冲间隔为 $100 \mu s$,那么 $2 \sim 3 \mu s$ 的脉冲拖尾相对 于它的间隔 100 µs 而言,可以忽略不计,因此,在如 图1所示的光路图中,主振和本振各分出一束光外 差,被另一个偏频控制探测器接收,有2~3 us的时 间进行鉴频,其鉴频精度完全可以满足偏频锁定的 需要 在现有技术条件下很容易实现。

4 结 论

从频域来看,脉冲 CO₂ 激光外差与连续激光外 差相比,频谱略有展宽;从时域来看,脉冲外差是脉 冲包络与连续波外差的乘积,特别是由于调 Q 脉冲 波形类似于瑞利统计分布函数曲线,带有较长的拖 尾,与此同时脉冲拖尾长短还与调 Q 电源触发开关 电压的宽度密切相关,而且拖尾部分的能量对脉冲 的峰值功率没有贡献,原则上讲越短越好。如果要 想在脉冲宽度100~200 ns之内对差频信号进行鉴 频是非常困难的,因此利用脉冲拖尾长短可以控制 的特性,把它控制在2~3 μs之内,利用脉冲激光外 差2~3 μs拖尾部分的差频信号,在现有技术条件 下基本上可以实现连续本振光和脉冲主振光的脉冲 激光外差信号的差频跟踪和偏频控制。这一技术使 脉冲外差体制激光雷达有非常好的应用前景。

参考文献

- Sun Dongsong, Nan Jingda, Dai Yongjiang *et al*... Realtime intensity imaging for CO₂ laser heterodyne receive. *Acta Optica Sinica* (光学学报),1993,13(10):449~451 (in Chinese)
- 2 Zeng Zhaoxin, Shi Shuangjin. LFM pulse compression of a CO₂ laser. Chinese J. Lasers (中国激光), 1996, A23 (11)981~985(in Chinese)
- 3 Henrik Ahlberg, Stefan Lundqvist, Dietmar Letalick et al.. Imaging Q-switched CO₂ laser radar with heterodyne detection: design and evaluation. Appl. Opt., 1986, 25 (17) 2891~2898
- 4 Wang Qi, Tian Zhaoshuo, Wang Yu-san *et al*.. Electrooptically *Q*-switched RF excited CO₂ waveguide laser. *Chinese J*. *Lasers* (中国激光), 2000, A27(2):97~100 (in Chinese)
- 5 Takayasu Fukuda , Yoshio Matsuura , Tadatami Mori. Sensitivity of coherent range-resolved differential absorption lidar. Appl. Opt., 1984, 23(12) 2026~2032
- 6 A. L. Kachelmyer. Range-Doppler imaging : waveforms and receiver design. SPIE , 1988 , 999 :138~161